小学数学知识点归纳总结
“小学数学知识点归纳总结”相关的资料有哪些?“小学数学知识点归纳总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学数学知识点归纳总结”相关范文大全或资料大全,欢迎大家分享。
数学知识点归纳总结
我现在带初三数学,课本讲授已经结束,进入总复习阶段,把平常教学中的一些思想说说,主要谈谈归纳总结。归纳是思维形式重要的一种,属抽象思维。众所周知知识有感性与理性之区分,在认知能力上同样有感知与理智之区别,比如小的时候,我们以感性知识接受为主,我们通常也用一些感知的学习方式接受知识,就是用机械的死记硬背方法,但是学习成绩也不会很差。可是到了中学,大部分的知识属于理性知识,假如你仍然用感性的死记方法,这当然是行不通的。那么学会学习的核心内容就是学会思维。由此,学会分析与归纳就是要改变原来的学习方式。为了引起我们的重视,特意把归纳学习法也作为十大学习法之一。所说的归纳学习法就是通过归纳思维,形成对知识的特点、中心、性质的识记、理解与运用。当然,把它当成一种学习方法来说,归纳学习法主要靠归纳思维,它主要把分析作为前提,但它与归纳思维本身是不等同的。由此可见,归纳学习法指的是要善于去归纳事物的特点、性质,把握句子、段落的精神实质,同时,以归纳为基础,搜索相同、相近、相反的知识放在一起进行识记与理解。其主要的优点就是能起到更快地记忆、理解作用,其实对于我,在讲课中也用这样的方法。我们举例说明。
一、我们学习了相似后,利用相似原理测物高
主要分几种
初中数学知识点之基础知识点总结
一、数与代数a、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以
小学数学(分数)知识点总结
1、分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
⑴ 分母相同的分数,分子大的那个分数就大。
⑵ 分子相同的分数,分母小的那个分数就大。
⑶ 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
⑷ 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
⑴ 真分数:分子比分母小的分数叫做真分数。真分数小于1。
⑵
2017中考数学知识点【统计初步】
一、重要概念
1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
二、计算方法
1.样本平均数:⑴;⑵若,,…,,则(a—常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴;⑵若,,…,,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:
三、应用举例(略)
初三数学知识点:第四章直线形
★重点★相交线与平行线、三角形、四边形的有关概念
高中化学知识点归纳与总结
1.铁:铁粉是黑色的;一整块的固体铁是银白色的。
2.fe2+——浅绿色
3.fe3o4——黑色晶体
4.fe(oh)2——白色沉淀
5.fe3+——黄色
6.fe(oh)3——红褐色沉淀
7.fe(scn)3——血红色溶液
8.feo——黑色的粉末
9.fe2o3——红棕色粉末
10.铜:单质是紫红色
11.cu2+——蓝色
12.cuo——黑色
13.cu2o——红色
14.cuso4(无水)—白色
15.cuso4·5h2o——蓝色
16.cu(oh)2——蓝色
17.fes——黑色固体
18.baso4、baco3、ag2co3、caco3、agcl、mg(oh)2、三溴苯酚均是白色沉淀
19.al(oh)3白色絮状沉淀
20.h4sio
2017中考数学知识点【代数式】
一、 重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
7.算术
2017高一数学知识点总结集合
XX高一数学集合知识点总结
一.知识归纳:
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:n,z,q,r,n*
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈a都有x∈b,则a b(或a b);
2)真子集:a b且存在x0∈b但x0 a;记为a b(或 ,且 )
3)交集:a∩b={x| x∈a且x∈b}
4)并集:a∪b={x| x∈a或x∈b}
5)补集:cua={x| x a但x∈u}
小学数学最容易丢分的知识点总结
1、 列式计算时,一定要注意除和除以的区别:
a除以b或a被b除列式为:a÷b,
a除b,或用a去除b,列式为:b÷a
2、 边长为4cm的正方形,半径为2cm的圆,它们的面积与周长并不相等,因为单位不同,无法比较!应该表述为:“边长为4cm的正方形的周长与面积的数值相等”。
3、 半圆的周长和圆的周长的一半有区别。
4、 压路机滚动一周前进多少米?是求它的周长。压路机滚动一周压路的面积,就是求滚筒的侧面积。
5、 无盖的水桶,水池,金鱼缸,水槽等求表面积时一定要减少一个底面积。
6、 大数比小数大几分之几的方法:(大数—小数)÷单位“1”的量。
7、 两根同样长的绳子,一根剪去1/2米另一根剪去1/2,剩下的长度无法比较;
8、 0.52÷0.17商是3,余数不是1而是0.01
9、 求××率或百分之几的列式中,最后必须“×100﹪”.
10、 在求总人数、总只数、总棵树……的应用题时,结果不可能是分数和小数
1
初中数学基础知识点总结
一、数与代数a、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
熟语知识点总结
熟语知识点总结
考查范围:高考对熟语考查的重点是近义词的选用和辨析,命题点通常落在词义的轻重、大小、褒贬等方面的差异上,反映在词语使用的对象、范围以及上下文的对应、搭配等方面。常见的误用类型有望文生义、不明对象、褒贬颠倒、前后重复、不合惯用句式、谦词错位、理解片面等。在考查的成语、谚语、歇后语、惯用语中,以考查成语为主。
做熟语辨析题可以从以下两点入手:
一、词义辨析(望文生义/误用褒贬、搭配不当、谦敬错位)
望文生义,即按照字面意思来理解词语的含义。有些词语有古今两个意思,但在语言的发展变化过程中,它的本意已经不再使用,人们只采用它的引申义,如果不注意这一点,就容易犯“舍本逐末”的错误。
误用褒贬是指词语的感情色彩不同,运用时要根据目的、场合、对象的不同而异,命题者往往故意贬词褒用,或褒词贬用。
搭配不当是指一个词语依据的某种语法关系,往往有较固定的搭配方式,如果脱离这种搭配,则容易出错。
谦敬错位,是指有些词语本身表示自谦,有些词语则表示敬称,如果辨别不清,就会导致谦敬错位。
二、语境辨析(用错对象、重复累赘、自相矛盾、不合习惯)
用错对象是指有些词语只适用于特定的人或物,有特定的&ldquo